日韩午夜在线观看,色偷偷伊人,免费一级毛片不卡不收费,日韩午夜在线视频不卡片

北京鴻鷗成運儀器設備有限公司
中級會員 | 第15年

15601379746

工業物聯網監控系統
蓄熱型(EHT)地源熱泵系統 智能交通系統方案 智能燃料測溫系統 料場溫度監測系統 機器聲紋在機械設備健康狀態監測中的應用 物聯網智慧養牛系統 地熱井高精度傳感器分層測溫方案 深井連續測溫測深測壓系統 地溫監測系統 供暖換熱站在線遠程監控系統方案 地熱資源監測系統/地熱管理系統 高精度18B20數字溫度傳感器 在線多參數水質監測 NB-GPS型微功耗自動采集系統 深井救援裝備 罐區線光纖光柵感溫火災探測系統 糧庫溫度監控系統 地源熱泵溫度監控系統 地熱井分布式光纖測溫監測系統 0-3000米深井測溫儀/深水測溫儀 礦井通風阻力測定系統 智慧糧庫系統 土壤墑情監測系統 基于物聯網水利信息化方案 基于物聯網地質環境監測預警方案 油罐溫度液位在線監控系統 基于物聯網文物監測預警解決方案 水位遠程監測系統方案 地熱井遠程監控系統 煤堆溫度遠程監控系統 機房大棚養殖溫濕度監控系統 藥品冰箱溫濕度智能化監控系統方案 超市及營業性場所環境監測系統 溫濕度記錄儀 工業物聯網自動化系統 防災減災預警信息展播系統 建筑混凝土煤堆瀝青測溫系統 水情自動化測報系統 地源熱泵溫度場監控系統 物聯網水產養殖監控系統 智能溫室大棚監管系統 糧倉糧情測控系統
混凝土耐久性測試儀器
公路道路橋梁樁基儀器設備
進口類系列產品
工程地質隧道壩體勘測儀器
建筑工程質量無損檢測儀器
鋼結構檢測試驗儀器設備
建筑節能測試儀器設備
交通工程檢測儀器設備
室內環境,氣體環保測試儀器
紡織類測試儀器
測量測繪檢測儀器
工業無損檢測儀器
農藥試驗設備及分析儀器
FLUKE系列產品
工業自動化控制系統
裝配式高效機房

巖溶水系統演化與變化的情況概述

時間:2020/8/21閱讀:1853
分享:

  1 概 述

 

  20世紀以來,環境急劇惡化,以環境變化為研究內容的變化已成為當今地學界活躍的研究領域,相繼出臺了地圈生物圈計劃(IGBP)、世界氣候研究計劃(WCRP)、環境變遷人文因素計劃(IHDP)、生物多樣性計劃(DIVERSITAS)等多項計劃,旨在深入探索不同時間尺度的環境演變規律,揭示環境變化的原因,識別環境的自然演變過程與人類活動的影響機理,準確評價環境變化的影響,預測21世紀以及更遠將來的環境狀況(YeDuzhengetal.,1995;林海,2001;國家自然科學基金委員會,1998)。

 

  在水資源日趨緊張的情況下,水文水資源對變化、特別是氣候變化的響應研究已受到普遍關注,先后在氣候變化(含過去氣候變化)、土地利用/土地覆蓋對河川徑流量、流域水量平衡、需水量、水資源脆弱性、水資源管理、水文事件等方面開展了較系統的研究工作(NemecJetal.,1982;GleickPH,1987;GleickPH,1989;WaggonerPE,1990;Fred-ericKD,1993;LalM,1994;施雅風,1995;KennethDF,1997;LinsHetal.,1999;鄧惠平等,2001)。與地表水相比,地下水在這方面的研究工作目前還比較薄弱,不過一些研究者已經注意到氣候變化(特別是大氣降雨)與土地利用同樣會對地下水的水質與水量產生深刻的影響(DzhamalovRG(譯文),1997;YuanDaoxian,2000;WilliamM,2001),而且,部分研究表明地下水還是變化信息的良好載體(J.C.方泰斯,1994(譯文);EdmundsWM,1995;張宗祜等,1997)。因此,開展有關地下水與變化的研究不僅迫切,而且意義重大。 巖溶區總面積約2200×104 km2 ,占陸地面積的15%。巖溶系統是碳循環的積極參與者,巖溶區吸收大氣中CO2的通量可達(2.2~6.08)×1014gC/a,約占目前碳循環模型中未知匯的1/3(袁道先,1993、1999)。巖溶區居住著約10億人口,是人類重要的生存環境。但巖溶生態系統極其脆弱,受氣候變化和人類活動影響尤為顯著。因此,它是變化研究關注的地區(袁道先,1995;HorvatinˇcicNetal.,2001),目前已經開展了3個與巖溶有關的地質對比計劃(IGCP299、IGCP379和IGCP448)。而賦存于碳酸鹽巖中的地下水不僅是當地工農業生產、居民生活和生態用水的重要水源,而且也是巖溶作用的重要營力,但受環境變化的影響,巖溶水系統正遭受不同程度的破壞(DrewDetal.,1999;ОвчинниковГИидр.,1999;TycA,2001),因此積極開展巖溶水系統演化與對比研究尤為重要。

 

  我國北方是重要的能源與工農業基地,碳酸鹽巖分布面積近46.94×104 km2 ,占全區總面積的60.6%,是僅次于我國南方的第二大碳酸鹽巖集中分布區(《中國北方巖溶地下水資源及大水礦區巖溶水預測、利用與管理的研究》項目綜合組,1993)。該區巖溶水天然資源總量為192.45×108m3/a(李振拴,2000),巖溶水的開采量已近100×108m3/a(地質礦產部巖溶地質所、河南省地質礦產廳第1水文地質工程地質隊,1993),巖溶水是當地城市和工農業生產的重要優質供水水源。然而,近幾十年來受氣候變化與人類活動等因素的影響,北方巖溶水系統的供水能力不斷衰退,主要表現為巖溶水水位持續下降,水質不斷惡化,并由此引發了泉水枯竭、河流斷流、湖泊干涸、植被死亡、耕地撂荒等諸多環境問題,嚴重制約了這一地區經濟的發展,惡化了人們的生存環境。如:北方第1大泉娘子關泉(孫連發等,1997),其流量自1970年以來開始顯著減少,已由1960年的近16m3 /s衰減到10m3 /s以下,1985年以來年均流量未曾超過9m3/s;現在該泉群中的水簾洞、程家兩泉已*斷流,河坡泉已基本干涸;北方第二大泉辛安村泉(王振東等,1996),其多年平均流量為10.10m3 /s,1976年流量大,為13.74m3/s,但此后逐年遞減,1993年流量已衰減為5.40m3/s;雁北名泉神頭泉(馬騰等,2001),泉流量于1964年達到大,為9.28m3 /s,此后不斷衰減,到1993年衰減為3.28m3 /s;晉祠泉(何宇彬等,1997),1958年平均流量為1.98m3/s,1991年流量衰減至0.16m3/s,1992年出現斷流;濟南的趵突泉、黑虎泉、珍珠泉和五龍泉(奚德蔭等,1993)在1950年末總流量在3.5~4.0m3/s間,但近年來逐年遞減,每年枯水季節出現斷流,泉水的名勝遭受破壞;焦作地區(地質礦產部巖溶地質所、河南省地質礦產廳第1水文地質工程地質隊,1993)的巖溶水位從1950年至今一直呈現出階梯狀下降趨勢,現已導致該區不少泉水斷流;另據有關資料顯示(關碧珠等,1993),北方地區巖溶水遭受原生、工業和生活污染的總面積達9192.2km2 ,主要污染 物為Fe、Mn、F-、SO2-4、TDS、NO2-N、NH4-N、COD、Hg、Cr6+、Pb、C6H5OH等。

 

  此外,我國北方地處中緯度,是受氣候變化影響大的地區。按已有的研究,受氣候變暖的影響,這一地區夏季出現干旱的頻率增加(葉篤正,1986)。我國科學家趙宗慈(1990)利用5個應用較廣的大氣與海洋環流模式(GFDL、GISS、NCAR、OSU與UKMO)模擬表明:由于大氣中CO2濃度的增加將導致地面氣溫增加4℃,其中引人注目的是中緯度地區土壤濕度可能減少,而荒漠化面積將擴大。我國著氣象學家葉篤正先生(1986)曾不無憂慮地指出:“受氣候變化影響大莫過于氣候脆弱地區將經不起變化(當然對有些地區可能會有好的影響)。使我們擔心的地區是我國嚴重缺水的華北和西北。這兩個地區正處于中緯度……。”由此看來,在未來氣候變化影響下,我國北方巖溶水系統可能會進一步惡化。

 

  因此,運用變化的研究方法,結合已有的巖溶水系統研究成果,分析巖溶水系統不同時間尺度的演化規律,揭示巖溶水系統演化的驅動機制,識別巖溶水系統的自然演變過程與人類活動影響過程,準確評價巖溶水環境現狀,預測未來氣候變化和人類活動影響下巖溶水系統的演化趨勢,提出合理可行的巖溶水系統修復技術,對于改善我國北方巖溶區人類生存環境,提高人類對環境變化的適應能力,實現地區經濟的可持續發展具有重要而深遠的現實意義。

 

  對于目前我國北方巖溶水系統“退化”的原因一直是研究者們關注的焦點。但由于研究者們研究的尺度不同、資料來源各異、研究地域的局限等原因,在氣候變化與人類活動,誰是影響巖溶水系統“退化”的主要因素上始終沒有達成一致的認識。其實,在地質—氣候—人類三因素的共同作用下巖溶水系統一直處于不斷的演化中,不同時間尺度其影響因素的主次不同,顯示的演化規律也不同,一個時間段內泉流量出現的衰減,在更大的時間尺度上也許只是一個小的波動。因此,從巖溶水系統演化角度分析,目前我國北方巖溶水系統“退化”可能是揭示其真實原因的惟一可行途徑。

 

  近年來,我國學者在巖溶水系統演化方面已經做了不少有益的嘗試。盧耀如院士(1999)探索了“構造”與“氣候”兩大因素對巖溶發育規律及其水文地質環境演化的影響,并對比了中國大陸與港、臺地區,以及中國與歐美等國一些典型地區巖溶與巖溶水文地質特征,但由于其研究的空間尺度和時間尺度較大,對我國北方巖溶水系統演化規律并未作深入的探討。王焰新教授等較早就注意到山西泉鈣華及相關沉積物的環境記錄功能(該項研究得到了國家自然科學基金的資助(No:49572159)),孫連發教授等(1997)運用泉鈣華對水動力學特征的指示作 4 巖溶水系統演化與變化研究———以山西為例用,初步分析了娘子關泉群的時空演化過程,李義連(1999)通過對娘子關泉群泉鈣華13C、18 O 的分析,指出泉鈣華是記錄古氣候變化的重要介質,它所反映的古氣候變化與我國北方黃土、孢粉分析結果在20萬年時間尺度上有較好的對應關系,并通過對泉域巖溶水稀土元素等化學組成的分析,研究了娘子關巖溶水系統水質演化過程。通過這些研究,對于娘子關泉巖溶水系統演化過程有了一個框架性的認識。但研究也存在一定欠缺,主要表現為影響因素考慮不全面,氣候變化的時間分辨率低,且與巖溶水系統演化結合不緊密,沒有得出量化結論,對地質、氣候、人類在不同演化階段的作用強度、作用機理缺乏系統深入的分析等等。更重要的是,以前相對獨立的巖溶水系統間現在卻出現了水力,而趨向于“融合”。因此,需要從比泉域更大的空間尺度考察巖溶水系統演化,才能更全面地認識其演化規律。

 

  “變化”研究,特別是“過去變化”(PAGES)研究的不斷擴展和深入,為更全面、系統地研究我國北方巖溶水系統演化規律提供了豐富的氣候與地質環境資料和研究方法(RacovitaGetal.,2001;COHMAPMembers,1988;SunDonghuai,1995;WinogradIC,1992;HulmeMetal.,1992)。“過去變化”研究的內容:一是重建近2000年來氣候變化和環境演變的詳細歷史,時間分辨率至少達到10年,甚至是年或季;二是重建一個完整冰期循環的氣候與環境演變過程(任國玉,1994)。近年來,中國學者通過對黃土、湖積物、冰芯、海洋沉積、樹木年輪以及地層中生物遺存和有關歷史記錄的分析,在重塑我國古氣候變化方面取得了喜人的成果(葉篤正,1992)。竺可楨教授(1990)根據大量的歷史文獻記載,系統地概括了中國5000年來的氣候變遷;王紹武等(1993)建立了我國1880年以來的氣溫序列;章名立(1993)給出了我國東部1890年以來的降雨曲線;徐國昌等(1992)研究了我國西北干旱半干旱區現代降雨的變化規律。與此同時,巖溶沉積物及其流體包裹體也愈來愈成為高分辨率氣候分析的有用材料,并取得了重大進展。Brecker等(1960)用14C*測定了洞穴碳酸鈣年代;Schwarcz等(1976)對碳酸鈣水包裹體穩定同位素進行了分析,并研究了其古氣候意義。我國學者王訓一(1985)、朱洪山(1994)、李彬(1994)、劉東升(1997)、李義連(1999)、袁道先(2004)、胡超涌(2005)等通過對石鐘乳、石筍、泉鈣華中穩定同位素的測定與分析,獲得了較好的古氣候變化研究結果。近年來,隨著樹木年輪水文學的不斷發展與完善,一些研究者開始從樹木年輪中提取徑流量和其他水文要素信息,如李江風等(2000)通過對新疆哈密地區樹木年輪表中流量信息的提取,重建了該區較大河流故鄉河過去300多年的年平均徑流量,1957—1979年實測徑流量與重建序列的對比表明,重建效果令人滿意。而我國北方巖溶地下水與河流水力十分密切(WangYXetal.,2001),從而使重建過去幾百年巖溶泉流量序列和巖溶地下水水動力場成為可能。對比是變化研究中運用普遍的一種方法,同樣可以應用到巖溶水系統演化研究中。碳酸鹽巖的沉積作用受緯度的制約,主要分布在南、北緯28°~40°之間(《中國北方巖溶地下水資源及大水礦區巖溶水預測、利用與管理的研究》項目綜合組,1993),由此巖溶水系統的發育呈現出不同氣候帶間的差異性和相同氣候帶間的相似性,因此,通過對比世界不同地區巖溶水系統的發育規律有助于更深刻認識其演化過程。IGCP299、IGCP379和IGCP448三個地質對比計劃的執行已經為這方面的研究奠定了基礎。

 

  綜上所述,巖溶區是人類重要的生存環境,但其生態環境十分脆弱,極易遭受破壞。中國北方巖溶水系統演化研究的開展不僅是實現這一地區經濟可持續發展、改善居民生存環境的有效途徑,而且,對世界其他巖溶水系統的研究也有重要參考價值。目前,這一研究已引起研究者們的廣泛關注,并進行了不少有益的嘗試,但仍存在局限。

 

  “變化”研究在古氣候重建、樹木年輪水文研究及世界巖溶對比等方面取得的重大進展為巖溶水系統演化與變化研究提供了豐富的背景資料。

 

  山西是我國重要的能源煤炭基地,也是我國北方碳酸鹽巖分布多的省份,碳酸鹽巖分布面積達10.2×104 km2 ,占全省總面積的65%。巖溶水天然資源總量約35×108 m3 /a。據不*統計(韓行瑞等,1993),大于0.1m3/s的巖溶大泉有86處,其中,原始流量大于1m3/s的19處,大于4m3/s的8處,我國北方的巖溶大泉娘子關泉和辛安泉就出露于此。因而,它是我國北方巖溶水系統的典型。該地巖溶水研究歷史長,積累的研究成果多。此外,山西歷史悠久,文獻記載、特別是巖溶泉水的記載豐富;黃土分布廣泛,泉鈣華等巖溶沉積物發育普遍,是研究我國北方巖溶水系統演化與變化的理想場地。

 

全自動野外地溫監測系統/凍土地溫自動監測系統

地源熱泵分布式溫度集中測控系統

礦井總線分散式溫度測量系統方案

礦井分散式垂直測溫系統/地熱普查/地溫監測哪家好選鴻鷗

礦井測溫系統/礦建凍結法施工溫度監測系統/深井溫度場地溫監測系統

 

TD-016C型 地源熱泵能耗監控測溫系統

產品關鍵詞:地源熱泵測溫,地埋管測溫,淺層地溫在線監測系統,分布式地溫監測系統

此款系統專門為地源熱泵生產企業,新能源技術安裝公司,地熱井鉆探公司以及節能環保產業等單位設計,通過連接我司單總線地熱電纜,以及單通道或多通道485接口采集器,可對接到貴司單位的軟件系統。歡迎各類單位以及經銷商詳詢!此款設備支持貼牌,具體價格按量定制。

RS485豎直地埋管地源熱泵溫度監測系統【產品介紹】

    地源熱泵空調系統利用土壤作為埋地管換熱器的熱源或熱匯,對建筑物進行供熱和供冷.在埋地管換熱器設計中,土壤的導熱系數是很重要的參數.而對地溫進行長期可靠的監測顯得特別重要。在現場實測土壤導熱系數時測試時間要足夠長,測試時工況穩定后的流體進出口及不同深度的溫度會影響測試結果的準確性。因此地埋測溫電纜的設計顯得尤其重點。較傳統的測溫電纜設計方法,單總線測溫電纜因為接線方便、精度高且不受環境影響、性價比高等優點,目前已廣泛應用于地埋管及地源熱泵系統進行地溫監測,因可靠性和穩定性在諸多工程中已得到了驗證并取得了較好的口啤。

   采集服務器通過總線將現場與溫度采集模塊相連,溫度采集模塊通過單總線將各溫度傳感器采集到的數據發到總線上。每個采集模塊可以連接內置1-60個溫度傳感器的測溫電纜相連。 本方案可以對大型試驗場進行溫度實時監測,支持180口井或測溫電纜及1500點以上的觀測井溫度在線監測。

RS485豎直地埋管地源熱泵溫度監測系統

1. 地埋管回填材料與地源熱泵地下溫度場的測試分析 

2. U型垂直埋管換熱器管群間熱干擾的研究 

3. U型管地源熱泵系統性能及地下溫度場的研究 

4. 地源熱泵地埋管的傳熱性能實驗研究 

5. 地源熱泵地埋管換熱器傳熱研究 

6. 埋地換熱器含水層內傳熱的數值模擬與實驗研究,埋地換熱器含水層內傳熱的數值模擬與實驗研究。

豎直地埋管地源熱泵溫度測量系統,主要是一套先進的基于現場總線和數字傳感器技術的在線監測及分析系統。它能有對地源熱泵換熱井進行實時溫度監測并保存數據,為優化地源熱泵設計、探討地源熱泵的可持續運行具有參考價值。

二、RS485豎直地埋管地源熱泵溫度監測系統本系統的重要特點:

1.結構簡單,一根總線可以掛接1-60根傳感器,總線采用三線制,所有的傳感器就燈泡一樣,可以直接掛在總線上.

2.總線距離長.采用強驅動模塊,普通線,可以輕松測量500米深井.

3.的深井土壤檢測傳感器,防護等級達到IP68,可耐壓力高達5Mpa. 

4.定制的防水抗拉電纜,增強了系統的穩定性和可靠特點總結:高性價格比,根據不同的需求,比你想象的*.

針對U型管口徑小的問題,本系統是傳統鉑電阻測溫系統理想的替代品. 可應用于:

1.地埋管回填材料與地源熱泵地下溫度場的測試分析 

2.U型垂直埋管換熱器管群間熱干擾的研究 

3. U型管地源熱泵系統性能及地下溫度場的研究 

4. 地源熱泵地埋管的傳熱性能實驗研究 

5. 地源熱泵地埋管換熱器傳熱研究 

6. 埋地換熱器含水層內傳熱的數值模擬與實驗研究。

   本系統技術參數:支持傳感器:18B20高精度深井水溫數字傳感器,測井深:1000米,傳感器耐壓能力:5Mpa ,配置設備:遠距離溫度采集模塊+測井電纜+傳感器,

RS485豎直地埋管地源熱泵溫度監測系統系統功能: 

1、溫度在線監測 

2、 報警功能 

3、 數據存儲 

4、定時保存設置

5、歷史數據報表打印 

6、歷史曲線查詢等功能。

【技術參數】

1、溫度測量范圍:-10℃ ~ +100℃

2、溫度精度: 正負0.5℃ (-10℃ ~ +80℃)

3、分  辨 率: 0.1℃

4、采樣點數: 小于128

5、巡檢周期: 小于3s(可設置)

6、傳輸技術: RS485、RF(射頻技術)、GPRS

7、測點線長: 小于350米

8、供電方式: AC220V /內置鋰電池可供電1-3 

9、工作溫度: -30℃ ~ +80℃

10、工作濕度: 小于90%RH

11、電纜防護等級:IP66

使用注意事項:

防水感溫電纜經測試與檢測,具備一定的防水和耐水壓能力,使用時,請按以下方法操作與使用:
1. 使用時,建議將感溫電纜置于U形管內以方便后期維護。
若置與U形管外,請小心操作,做好電纜防護,防止在安裝過程中電纜被劃傷,以保持電纜的耐水壓能力和使用壽命。
2. 電纜中不銹鋼體為傳感器所在位置,因溫度為緩慢變化量,正常使用時,請等待測物熱平衡后再進行測量。
3. 電纜采用三線制總線方式,紅色為電源正,建議電源為3-5V DC,黑色為電源負,蘭色為信號線。請嚴格按照此說明接線操作。
4. 系統理論上支持180個節點,實際使用應該限制在150個節點以內。
5.系統具備一定的糾錯能力,但總線不能短路。
6. 系統供電,當總線距離在200米以內,則可以采用DC9V給現場模塊供電,當距離在500米之內,可以采用DC12V給系統供電。

【北京鴻鷗成運儀器設備有限公司提供定制各個領域用的測溫線纜產品介紹】

地源熱泵空調系統利用土壤作為埋地管換熱器的熱源或熱匯,對建筑物進行供熱和供冷.在埋地管換熱器設計中,土壤的導熱系數是很重要的參數.而對地溫進行長期可靠的監測顯得特別重要。在現場實測土壤導熱系數時測試時間要足夠長,測試時工況穩定后的流體進出口及不同深度的溫度會影響測試結果的準確性。因此地埋測溫電纜的設計顯得尤其重點。

   由北京鴻鷗成運儀器設備有限公司推出的地源熱泵溫度場測控系統,硬件采取先進的ARM技術;上位機軟件使用編程語言技術設計,富有人性、直觀明了;測溫傳感器直接封裝在電纜內部,根據客戶距離進行封裝。目前該系統廣泛應用于地源熱泵地埋管、地源熱泵溫度場檢測、地源熱泵地埋換熱井、地源熱泵豎井及地源熱泵溫度場系統進行地溫監測,本系統的可靠性和穩定性在諸多工程中已得到了驗證并取得了較好的口啤。

地源熱泵診斷中土壤溫度的監測方法:
  為了實現地源熱泵系統的診斷,必須首先制定保證系統正常運行的合理的標準。在系統的設計階段,地下土壤溫度的初始值是一個重要的依據參數,它也是在系統運行過程中可能產生變化的參數。如果在一個或幾個空調采暖周期(一般一個空調采暖周期為1年)后,系統的取熱和放熱嚴重不平衡,則這個初始溫度會有較大的變化,將會大大降低系統的運行效率。所以設計選用土壤溫度變化曲線作為診斷系統是否正常的標準。
  首先對地源熱泵系統所控制的建筑物進行全年動態能耗分析,即輸入建筑物的條件,包括建筑的地理位置、朝向、外形尺寸、圍護結構材料和房間功能等條件,計算出該區域全年供暖、制冷的負荷,我們根據該負荷,選擇合適的系統配置,即地埋管數量以及必要的輔助冷熱源,并動態模擬計算地源熱泵植筋加固系統運行過程中土壤溫度的變化情況,得到初始土壤溫度標準曲線。采用滿足土壤溫度基本平衡要求的運行方案運行,同時系統實時監測土壤溫度變化情況,即依靠埋置在地下的測溫傳感器監測土壤的溫度,并且將測得的溫度傳遞給地源熱泵系統。

淺層地溫能監測系統概況:

地源熱泵空調系統利用土壤作為埋地管換熱器的熱源或熱匯,對建筑物進行供熱和供冷,在埋地管換熱器設計中,土壤的導熱系數是很重要的參數,而對地溫進行長期可靠的監測顯得特別重要。在現場實測土壤導熱系數時測試時間要足夠長,測試時工況穩定后的流體進出口及不同深度的溫度會影響測試結果的準確性。因此地源熱泵地埋測溫電纜的設計顯得尤其重點。較傳統的地源熱泵測溫電纜設計方法,北京鴻鷗成運儀器設備有限公司研發的數字總線式測溫電纜因為接線方便、精度高且不受環境影響、性價比高等優點,目前已廣泛應用于地埋管及地源熱泵系統進行地溫監測,因可靠性和穩定性在諸多工程中已得到了驗證并取得了較好的口啤。

   為方便研究土壤、水質等環境對空調換熱井能效等方面的可靠研究或溫度測量,目前地源熱泵地埋管測溫電纜對于地埋換熱井,有口徑小,深度較深等特點的測溫方式,如果測量地下120米的地源熱泵井,要放12路線PT100傳感器。12根測溫線纜若平均放置,即10米放一個探頭,則所需線材要1500米,在井上需配置一個至少12通道的巡檢儀,若需接入電腦進行溫度實時記錄,該巡檢儀要有RS232或RS485功能,根據以上成本估計,這口井進行地熱測溫至少成本在8000元,雖然選擇高精度的PT100可提高系統的測溫精度,但對模擬量數據采集,提供精度的有效辦法是提供儀器的AD轉換器的位數,即提供巡檢儀的測量精度,若能夠在長距離測溫的條件下進行多點測溫,能夠做到0.5度的精度,則是非常不容易。針對這一需求,北京鴻鷗成運儀器設備有限公司推出“數字總線式地源熱泵地埋管測溫電纜”及相應系統。礦井深部地溫監測,地源熱泵溫度監測研究,地源熱泵溫度測量系統,淺層地熱測溫系統。

地源熱泵數字總線測溫線纜與傳統測溫電纜對比分析:
   傳統的溫度檢測以熱敏電阻、PT100或PT1000作為溫度敏感元件,因其是模擬量,要對溫度進行采集,若需較高精度,需要選擇12位或以上的AD轉換及信號處理電路,近距離時,其精度及可靠性受環境影響不大,但當大于30米距離傳輸時,宜采用三線制測方式,并需定期對溫度進行校正。當進行多點采集時,需每個測溫點放置一根電纜,因電阻作為模擬量及相互之間的干擾,其溫度測量的準確度、系統的精度差,會受環境及時間的影響較大。模塊量傳感器在工作過程中都是以模擬信號的形式存在,而檢測的環境往往存在電場、磁場等不確定因素,這些因素會對電信號產生較大的干擾,從而影響傳感器實際的測量精度和系統的穩定性,每年需要進行校準,因而它們的使用有很大的局限性。

    北京鴻鷗成運儀器設備有限公司研發的總線式數字溫度傳感器,具有防水、防腐蝕、抗拉、耐磨的特性,總線式數字溫度傳感器采用測溫芯片作為感應元件,感應元件位于傳感器頭部,傳感器的精度和穩定性決定于美國進口測溫芯片的特性及精度級別,無需校正,因數據傳輸采用總線方式,總線電纜或傳感器外徑可做得很小,直徑不大于12mm,且線路長短不會對傳感器精度造成任何影響。這是傳統熱電阻測溫系統*的優勢。所以數字總線式測溫電纜是地源熱泵地埋管管測溫、地溫能深井和地層溫度監測理想的設備。數字總線式數據傳感器本身自帶12位高精度數據轉換器和現場總線管理器,直接將溫度數據轉換成適合遠距離傳輸的數字信號,而每個傳感器本身都有唯的識別ID,所以很多傳感器可以直接掛接在總線上,從而實現一根電纜檢測很多溫度點的功能。

地源熱泵大數據監控平臺建設

一、系統介紹

1、建設自動監測監測平臺,可監測大樓內室內溫度;熱泵機組空調側和地源側溫度、

壓力、流量;系統空調側和地源側溫度、壓力、流量;熱泵機組和水泵的電壓、電流、功率、

電量等參數;地溫場的變化等,實現熱泵機組運行情況 24 小時實時監測,異常情況預

警,做到真正的無人值守??蓪岜孟到y的長期運行穩定性、系統對地溫場的影響以及能效

比等進行綜合的科學評價,為進一步示范推廣與系統優化的工作提供數據指導依據。

具體測量要求如下:

1)各熱泵機組實時運行情況;

2)室內溫度監測數據及變化曲線;

3)室外環境溫度數據及變化曲線;

4)機房內空調側出回水溫度、壓力、流量等監測數據及變化曲線;

5)機房內地埋管側出回水溫度、壓力、流量等監測數據及變化曲線;

6)機房內用電設備的電流、電壓、功率、電能等監測數據及變化曲線;

7)地溫場內不同深度的地溫監測數據及變化曲線;

8)能耗綜合分析、系統 COP 分析以及系統節能量的評價分析。

2、自動監測平臺建成以后可以對已經安裝自動監測設備的地熱井實施自動監測的數據分

析展示,可實現地熱井和回灌井的水位、水溫、流量實施傳輸分析,并可實現數據異常情況預

警,做到實時監管,有地熱井運行的穩定性。

1)開采水量及回水水量的流量監測及變化曲線;

2)開采水溫及回水水溫的溫度監測及變化曲線;

3)開采井井內水位監測及變化曲線;

 

 

推薦產品如下:

地源熱泵溫度監控系統/地源熱泵測溫/多功能鉆孔成像分析儀/井下電視/鉆孔成像儀/地熱井鉆孔成像儀/井下鉆孔成像儀/數字超聲成像測井系統/多功能超聲成像測井系統/超聲成像測井系統/超聲成像測井儀/成像測井系統/多功能井下超聲成像測井儀/超聲成象測井資料分析系統/超聲成像

關鍵詞:地熱水資源動態監測系統/地熱井監測系統/地熱井監測/水資源監測系統/地熱資源回灌遠程監測系統/地熱管理系統/地熱資源開采遠程監測系統/地熱資源監測系統/地熱管理遠程系統/地熱井自動化遠程監控/地熱資源開發利用監測軟件系統/地熱水自動化監測系統/城市供熱管網無線監測系統/供暖換熱站在線遠程監控系統方案/換熱站遠程監控系統方案/干熱巖溫度監測/干熱巖監測/干熱巖發電/干熱巖地溫監測統/地源熱泵自動控制/地源熱泵溫度監控系統/地源熱泵溫度傳感器/地源熱泵中央空調中溫度傳感器/地源熱泵遠程監測系統/地源熱泵自控系統/地源熱泵自動監控系統/節能減排自動化系統/無人值守地源熱泵自控系統/地熱遠程監測系統

地熱管理系統(geothermal management system)是為實現地熱資源的可持續開發而建立的管理系統。

我司深井地熱監測產品系列介紹:

1.0-1000米單點溫度檢測(普通表和存儲表)/0-3000米單點溫度檢測(普通顯示,只能顯示溫度,沒有存儲分析軟件功能)

2.0-1000米淺層地溫能監測/高精度遠程地溫監測系統采集器采用低功耗、攜帶方便;物聯網NB無線傳輸至WEB端B/S架構網絡;單總線結構,可擴展256個點;進口18B20高精度傳感器,在10-85度范圍內,精度在0.1-0.2

3. 4.0-10000米分布式多點深層地溫監測(采用分布式光纖測溫系統細分兩大類:1.井筒測試 2.井壁測試

4.0-2000NB型液位/溫度一體式自動監測系統(同時監測溫度和液位兩個參數,MAX耐溫125攝氏度)

5.0-7000米全景型耐高溫測溫成像一體井下電視(同時監測溫度和視頻圖片等)

6. 微功耗采集系統/遙控終端機——地熱資源監測系統/地熱管理系統(可在換熱站同時監測溫度/流量/水位/泵內溫度/壓力/能耗等多參數內容,可實現物聯網遠程監控,24小時無人值守)

有此類深井地溫項目,歡迎新老客戶朋友垂詢!北京鴻鷗成運儀器設備有限公司

關鍵詞:地熱井分布式光纖測溫監測系統/分布式光纖測溫系統/深井測溫儀/深水測溫儀/地溫監測系統/深井地溫監測系統/地熱井井壁分布式光纖測溫方案/光纖測溫系統/深孔分布式光纖溫度監測系統/深井探測儀/測井儀/水位監測/水位動態監測/地下水動態監測/地熱井動態監測/高溫水位監測/水資源實時在線監控系統/水資源實時監控系統軟件/水資源實時監控/高溫液位監測/壓力式高溫地熱地下水水位計/溫泉液位測量/涌井液位測量監測/高溫涌井監測水位計方案/地熱井水溫水位測量監測系統/地下溫泉怎么監測水位/ 深井水位計/投入式液位變送器 /進口擴散硅/差壓變送器/地源熱泵能耗監控測溫系統/地源熱泵能耗監測自動管理系統/地源熱泵溫度遠程無線監控系統/地源熱泵能耗地溫遠程監測監控系統/建筑能耗監測系統

【地下水】洗井和采樣方法對分析數據的影響

會員登錄

×

請輸入賬號

請輸入密碼

=

請輸驗證碼

收藏該商鋪

X
該信息已收藏!
標簽:
保存成功

(空格分隔,最多3個,單個標簽最多10個字符)

常用:

提示

X
您的留言已提交成功!我們將在第一時間回復您~
撥打電話
在線留言
主站蜘蛛池模板: 靖江市| 九龙坡区| 巴楚县| 富顺县| 山东| 闵行区| 肃南| 阜平县| 丰镇市| 南投市| 司法| 罗定市| 乐东| 桂林市| 会宁县| 邻水| 墨脱县| 金湖县| 天长市| 建昌县| 长丰县| 江华| 连城县| 拉萨市| 康定县| 桦川县| 南城县| 新化县| 三河市| 河东区| 库车县| 普格县| 汽车| 衡东县| 怀远县| 曲麻莱县| 凤山市| 来凤县| 南雄市| 罗山县| 景宁|